

2nd European Workshop on MDO

19-20 November 2019 Toulouse, France

Coordinator: Michaël Méheut (ONERA)

MADELEINE project, Grant Agreement No 769025

Consortium MADELEINE

MADELEINE	Multidisciplinary ADjoint-based Enablers for LargE-scale Industrial desigN in aEronautics
Call H2020-Transport 2017- MG 1.3	Industrial competitiveness
Coordinator	ONERA THE FRENCH AEROSPACE LAB
15	AIRBUS Rolls-Royce ASSAULT CON OPTIMAD
15 partners	Università di Cagliari Southampton Si the University of Southampton University of Sheffeld.
Duration	36 months (June 2018 – May 2021)
EU funding	5.8 M€

Current use of MDO in industry

MDO and/or adjoint-based optimisation using high-fidelity simulations	Often limited to single disciplines : ✓ Aerodynamics ✓ Acoustics ✓ Thermics ✓ Structural analysis
Multi-Disciplinary analysis during design campaign	Iterative process from one discipline to the other
Limitations and drawbacks of the current approach	Significant time delays to the overall process Difficulties to exploit multi-disciplinary trade-off

Overall objectives of MADELEINE

	✓ Competitiveness - By reducing development time
Meet short, medium	and costs (incl. manufacturing)
and long-terms	✓ Environment - By designing more efficient
industrial objectives	configurations with better multidisciplinary
	compromises
Address the industrial needs of competitive design	 ✓ Extend the scope of MDO to include HiFi simulations (CFD, CSM, CAA, CHT) ✓ Fully exploit the adjoint capability to solve design problems with hundreds or thousands of design parameters ✓ Increase the reliability of the adjoint solvers ✓ Extend MDO to efficiently include manufacturing criteria

Overall objectives of MADELEINE

Demonstrate the **benefits of adjoint-based MDO**

Concept of MADELEINE

Focus on synergies between enablers and demonstrators

Enablers: methods and tools required to apply adjoint based MDO processes *Demonstrators*: test cases representative of multi-physics industrial design problems

Aero-structure aircraft wing design

Challenge	Perform aero-structure flexible wing optimisations of modern transport aircraft in a real industrial context
Strategy	Apply of <i>aerodynamic, aero-elastic and aero-structure</i> <i>adjoint solvers</i> to measure the impact of multiphysics phenomena on the performance of optimised configurations
Configurations	A large passenger aircraft configuration (Airbus) <i>Partners: Airbus, ONERA, DLR, IRT</i>
	A business jet configuration (Dassault) Partners: Dassault, ESI, National Technical University of Athens

Aero-structure-manufacturing fan blade design

Challenge	Perform aero-structure-manufacturing fan blade optimisations of a Ultra-High-By-pass-Ratio modern engine
Strategy	Progressively include manufacturing aspects on the MDO process to avoid accumulation of deviations that can cause the blades to deviate from the design intent in terms of optimal efficiency
Configurations	3 levels of complexity from generic configuration (NASA rotor 37) to complex industrial geometry (confidential Rolls-Royce)
	All configurations are representative of modern aircraft engine (Low-Pressure Fan)
	Partners: Rolls-Royce, University of Sheffield, University of Cagliary

Aero-thermal-manufacturing turbine blade design

Challenge	Perform aero-thermal-manufacturing turbine blade optimisations of a Ultra-High-By-pass-Ratio modern engine
	Use topology optimisation methods for the definition cooling passages
Strategy	Integrate of specific manufacturing process or uncertainties in the MDO loop to design configuration robust to geometry deviations
Configurations	3 levels of complexity from generic configuration (MT1) to complex industrial geometry (confidential Rolls-Royce)
	All configurations are representative of modern aircraft engine (High-Pressure Turbine)
	Partners: Rolls-Royce, University of Sheffield, University of Cagliary, ESI, OPTIMAD, National Technical University of Athens

Aero-acoustic isolated propeller blade design

Challenge	Perform aero-acoustic propeller blade optimisations of modern turbo-propulsor engine
Strategy	Use vertex morphing approach to open the design space Apply steady and unsteady aero-acoustic adjoint solvers to minimise the acoustic noise while considering strong aerodynamic constraints (in terms of performance)
Configuration	Generic design complying with the requirements of an electrical or hybrid CTOL/VTOL concept using light propellers (ONERA) <i>Partners: ONERA, NLR, Technical University of Munich</i>

Aero-acoustic air inlet and fan blade design

Challenge	Perform simultaneously aero-acoustic air inlet and fan blade optimisations of a Ultra-High-By-pass-Ratio modern engine
Strategy	Optimise the air inlet (including acoustic liners) and the fan blade in parallel with a specific coupling interface
	Apply steady and unsteady aero-acoustic adjoint solvers to improve both aerodynamic and acoustic performance
Configuration	Generic air intake adapted to the VITAL fan blade geometry
	<i>Partners: Rolls-Royce, University of Southampton, National Technical University of Athens</i>

Meet with us

Next Minisymposium at the 14th World Congress in Computational Mechanics and ECCOMAS Congress 2020 Paris, 19-24 July 2020

ADJOINT METHODS FOR MULTI-PHYSICS, INCLUDING APPLICATIONS

Deadline for abstracts: December 15, 2019

And stay tuned!

Website: https://www.madeleine-project.eu/

in www.linkedin.com/company/madeleine-project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 769025.

